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The topic of density-driven convection in porous media has been the focus of
many recent studies due to its relevance as a long-term trapping mechanism during
geological sequestration of carbon dioxide. Most of these studies have addressed the
problem in homogeneous and anisotropic permeability fields using linear-stability
analysis, and relatively little attention has been paid to the analysis for heterogeneous
systems. Previous investigators have reduced the governing equations to an initial-
value problem and have analysed it either with a quasi-steady-state approximation
model or using numerical integration with arbitrary initial perturbations. Recently,
Rapaka et al. (J. Fluid Mech., vol. 609, 2008, pp. 285–303) used the idea of non-modal
stability analysis to compute the maximum amplification of perturbations in this
system, optimized over the entire space of initial perturbations. This technique is
a mathematically rigorous extension of the traditional normal-mode analysis to
non-normal and time-dependent problems. In this work, we extend this analysis to
the important cases of anisotropic and layered porous media with a permeability
variation in the vertical direction. The governing equations are linearized and reduced
to a set of coupled ordinary differential equations of the initial-value type using the
Galerkin technique. Non-modal stability analysis is used to compute the maximum
growth of perturbations along with the optimal wavenumber leading to this growth.
We show that unlike the solution of the initial-value problem, results obtained using
non-modal analysis are insensitive to the choice of bottom boundary condition. For
the anisotropic problem, the dependence of critical time and wavenumber on the
anisotropy ratio was found to be in good agreement with theoretical scalings proposed
by Ennis-King et al. (Phys. Fluids , vol. 17, 2005, paper no. 084107) . For heterogeneous
systems, we show that uncertainty in the permeability field at low wavenumbers can
influence the growth of perturbations. We use a Monte Carlo approach to compute the
mean and standard deviation of the critical time for a sample permeability field. The
results from theory are also compared with finite-volume simulations of the governing
equations using fully heterogeneous porous media with strong layering. We show
that the results from non-modal stability analysis match extremely well with those
obtained from the simulations as long as the assumption of strong layering remains
valid.
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1. Introduction
Geological sequestration of carbon dioxide (CO2) into saline aquifers is considered

to be one of the most promising short-term solutions to mitigating greenhouse gas
emissions (IPCC 2005). The process involves capturing and pumping CO2 produced
at large industries and power plants into aquifers at a depth more than 800 m below
the surface of earth. Under the conditions present in these aquifers, CO2 exists in
a supercritical state with a density lower than that of the surrounding brine. The
injected CO2 rises upwards due to buoyancy and settles under the low-permeability
caprock (Hitchon 1996). Over a period of many decades following injection, the
CO2 slowly dissolves into the underlying brine. This solution of brine saturated with
CO2 has a density slightly higher (by about 1%) than that of pure brine (Garcia
2001), resulting in a gravitational instability. Under suitable conditions, this instability
manifests itself in the form of fingers of CO2-rich brine penetrating downwards. This
convective mechanism is expected to greatly enhance the rate of dissolution of CO2

resulting in faster localization of the injected CO2.
Due to the importance of density-driven convection process, there has been renewed

interest in studying the onset of convection along with the associated length and time
scales. Historically, the earliest work on convection in porous media was by Horton &
Rogers (1945) and Lapwood (1948), who studied the onset of cellular convection over
a linear, steady-state temperature profile in isotropic porous media using linear-
stability theory. These results were found to be in good agreement with experiments
and numerical simulations (Cheng 1978). A large body of work has focused on
understanding this cellular mode of convection (see for instance Beck 1972), and a
good review of the existing work is provided by Nield & Bejan (2006). The analysis
was extended to the case of anisotropic media by Castinel & Combarnous (1977),
Epherre (1977) and Kvernvold & Tyvand (1979) who used linear-stability theory to
derive the critical Rayleigh number for anisotropic media. Wooding (1978) presented
criteria for the onset of convection in media in which the permeability varies in
the vertical direction. Nield (1997) introduced the idea of an effective Rayleigh
number using the square of the harmonic mean of square roots of permeability.
The case in which one of the principal axes of permeability is not aligned with the
direction of gravity was analysed by Tyvand & Storesletten (1991). A nonlinear-
stability analysis for the anisotropic case was performed by Nilsen & Storesletten
(1990).

The onset of convection in layered media was studied by McKibbin & O’Sullivan
(1980) who analysed two- and three-layered media with varying contrasts of
permeability. McKibbin & Tyvand (1982) showed that the large-scale convection
in multi-layered porous media converges to the homogeneous anisotropic model as
the number of layers increases. Systems with vertically varying permeability were
considered by Nield (1994) and Leong & Lai (2001), and Braester & Vadasz (1993)
studied the effects of a weak heterogeneity using a perturbative approach. Simmons,
Fenstemaker & Sharp (2001) and Prasad & Simmons (2003) studied the Elder problem
(Elder 1967) in heterogeneous media and concluded that the traditional Rayleigh-
number-based criteria is not adequate for heterogeneous systems. Subsequently,
Nield & Simmons (2007) emphasized the need to identify between strong and weak
heterogeneity and argued that the idea of an effective Rayleigh number is useful for
the case of weak heterogeneity.
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The problem considered in this work differs from the Horton–Rogers problem due
to the time dependence of the base-state. We consider a quiescent porous medium
with initially no dissolved CO2 in contact with an infinite source of CO2 at the
top of the domain. The analogous case for heat transfer would be a system which
is suddenly cooled at the top. Mathematically, we specify that the brine lying at
the interface with supercritical CO2 is saturated with CO2. Much work has been
done on describing the stability of time-dependent systems. One early approach is
the so-called quasi-steady-state analysis, which involves ‘freezing’ the base-state at
some initial time t0 and studying the dynamics of the perturbations on the nonlinear
base-state (Lick 1965; Currie 1967). In this approach the main assumption is that the
perturbations are evolving much faster than the base-state, and the time dependence
of the base-state only enters through the parameter t0. Another approach is to use
a suitably selected eigenfunction decomposition to convert the partial differential
equations (PDEs) into a set of coupled ordinary differential equations (ODEs) of the
initial-value kind (Foster 1965) for the coefficients of the expansion. One problem with
this approach is that the initial conditions required to solve the ODEs are not known.
Foster (1965) studied the dynamics of this system for many different initial conditions
and found that a ‘white-noise’ initial condition in which all the coefficients are set to
unity gives the fastest growth. Tan & Homsy (1986) compared the quasi-steady-state
analysis approach to the initial-value approach and found that except for a brief
period when the base-state is changing rapidly, the two approaches give comparable
results. Jhaveri & Homsy (1982) used a stochastic formulation in which the amplitude
of the random forcing was computed using statistical thermodynamics. An approach
complimentary to linear stability is the energy technique (Joseph 1976; Straughan
2004) in which one studies the dynamics of a suitable defined energy functional.

Following Foster (1965), many investigators have recently used the initial-value
approach to analyse the carbon sequestration problem (Ennis-King, Preston &
Paterson 2005; Hassanzadeh, Pooladi-Darvish & Keith 2006; Xu, Chen & Zhang
2006). Ennis-King et al. (2005) used linear-stability analysis and global-stability
analysis to provide bounds for the length and time scales of convection in anisotropic
porous media. They also used the single-term Galerkin solution to obtain analytical
scalings for the dependence of critical time and wavenumbers on the anisotropy
ratio. Xu et al. (2006) extended these results by considering the variation of both
horizontal and vertical permeability. Hassanzadeh et al. (2006) used initial conditions
with different spectra to study the influence of initial conditions on the growth
of perturbations. In principle, we would like to use the optimal (fastest growing)
perturbations to study the length and time scales of convection. Riaz et al. (2006)
studied the problem for isotropic media using a co-ordinate transformation to a
similarity variable. They have shown that the solution resolves to the dominant mode
rapidly in this formulation, allowing them to study the dynamics of only the dominant
mode. Kim & Choi (2007) used a relaxed energy stability approach to predict the
critical length and time scales for a semi-infinite system and compared their results
with those obtained by previous investigators.

Recently, Rapaka et al. (2008) used the idea of non-modal stability theory (Farrell &
Ioannou 1996a,b; Trefethen & Embree 2005; Schmid 2007) to compute the maximum
amplification obtained by perturbations, optimized over the entire space of initial
conditions. They also obtained the physical structure of the optimal perturbation and
showed an excellent match with three-dimensional direct numerical simulations of the
governing equations. In this paper, we extend this work to account for the effects of
anisotropy and horizontal layering of the medium. In § 2, we describe the governing
equations for the system and derive the ODEs for the linearized system. Section 3
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provides a brief introduction to the idea of non-modal stability and the mechanism
for the onset of convection. In § 4 we present the results for anisotropic systems, and
§ 5 presents stability results for layered porous media along with a comparison with
finite-volume computations. Finally we present some concluding remarks in § 6.

2. Governing equations
The basic equations governing flow and transport in porous media are Darcy’s law

for the momentum of the fluid, continuity equation enforcing conservation of mass
and an advection–diffusion equation for the concentration of dissolved CO2:

μK−1 · v = − ∇P + ρf gez, (2.1)

∂ρf

∂t
+ ∇ ·

(
ρf v

)
= 0, (2.2)

φ
∂C

∂t
+ ∇ · (vC) = φD∇2C, (2.3)

where μ is the viscosity of the fluid; v = (u, v, w) is the volumetric flux of fluid
(Stauffer 2006); P is the pressure; ρf is the density of the brine–CO2 mixture; g is
the acceleration due to gravity; C is the concentration of dissolved CO2; φ is the
porosity; and D is the diffusion coefficient of CO2 in brine. The volumetric flux v

includes the effects of local porosity of the rock. For convenience, we will henceforth
refer to v as the ‘velocity’ of the fluid. The tensor K is the permeability tensor, which
is taken to be of the following form in this paper:

K =

⎛⎝KH 0 0
0 KH 0
0 0 γKH

⎞⎠ , (2.4)

where KH is the permeability in the horizontal directions and γ � 1.0 is the constant
anisotropy ratio. For cases in which we are interested in the effects of heterogeneity,
we take γ = 1 and KH to be a function of the vertical direction, KH = KH (z). Many
reservoirs and aquifers are composed of layers with different permeabilities, and
studying such systems is of great interest to petroleum exploration, modelling
contaminant transport and understanding geothermal convection. Experimental
studies on the equation of state of the brine–CO2 system have shown that the
density of the mixture is approximately linear in the concentration of dissolved CO2

within the range of pressures and temperatures of interest (Garcia 2001):

ρf = ρ0 (1 + βC) , (2.5)

where β = (1/ρ0)∂ρf /∂C. Also, since the total change in density under saturated
conditions is less than 1 %, we work in the framework of Boussinesq approximation,
replacing ρf by ρ0 everywhere, except in the buoyancy term.

In this paper, we are concerned with two separate, but closely related, problems:
(i) the effect of anisotropy and (ii) the effect of vertical heterogeneity (layering) on
the critical time and length scales characteristic of convection. While studying the
effects of anisotropy, KH is taken to be a constant value with no spatial dependence,
whereas for the heterogeneous cases, we use γ = 1.0 (i.e. locally isotropic) and KH

varies in the vertical direction. This vertical variation of permeability can be shown
to lead to global anisotropy when the number of layers is large (for the convergence
of a layered model to the anisotropic case, see McKibbin & Tyvand 1982).
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2.1. Formulation for the anisotropy problem

Following Ennis-King et al. (2005), we non-dimensionalize the governing equations
using

x̂ =
x

√
γ

H
, ŷ =

y
√

γ

H
, ẑ =

z

H
,

û =
uH

√
γ

φD
, v̂ =

vH
√

γ

φD
, ŵ =

wH

φD
,

Ĉ =
C

C0

, P̂ =
PγKH

μφD
, t̂ =

tD

H 2
.

In the following discussion, we omit the hats over the non-dimensional variables for
simplicity. The resulting non-dimensional equations are

v = −∇P + γRaCez, (2.6)

∇ · v = 0, (2.7)

∂C

∂t
+ ∇ · (vC) = γ ∇2

HC +
∂2C

∂z2
, (2.8)

where Ra is the Rayleigh number, defined as

Ra =
KHρ0βC0gH

μφD
. (2.9)

Eliminating pressure from the momentum equation, we get

∇2w = γRa∇2
HC, (2.10)

where ∇2
H =(∂2/∂x2) + (∂2/∂y2) is the Laplacian in the horizontal directions. The

boundary conditions for the velocity and concentration fields are

w(z = 0) = 0, w(z = 1) = 0, (2.11)

C(z = 0) = 1,
∂C

∂z
(z = 1) = 0. (2.12)

2.2. Formulation for the heterogeneous problem

In this case, the permeability is locally isotropic (i.e. γ = 1.0) and can be given by a
single function K(z). For convenience, we define the resistance function, R(z) = K(z)−1.
Non-dimensionalizing the equations as before, we get

R(z)v = −∇P + RaCez, (2.13)

∇ · v = 0, (2.14)

∂C

∂t
+ ∇ · (vC) = ∇2C, (2.15)

where the Rayleigh number is now defined as

Ra =
K0ρ0βC0gH

μφD
. (2.16)

The global Rayleigh number depends on a permeability scale K0, the choice of which
is non-trivial (for a discussion, refer to Nield & Simmons 2007). In this work, we
choose K0 to be the harmonic mean of the permeability. Taking the curl of the
momentum equation twice, we obtain

∇(∇ · (Rv)) − ∇2(Rv) = −γRa∇2
HCez. (2.17)
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Using the incompressibility constraint, this equation can be simplified to

R∇2w + R′w′ = Ra∇2
HC, (2.18)

where the primes denote differentiation along the vertical direction.

3. Linear analysis: non-modal growth
For both the anisotropic and heterogeneous formulations, the vertical component

of velocity is related to the concentration field through a linear operator L. For
simplicity, we will just refer to the velocity equation as

Lw = Ra∇2
HC,

where for the anisotropic problem the operator L is

L =
1

γ
∇2,

and for the heterogeneous problem

L = R∇2 + R′ d

dz
.

We now formally separate the pressure and concentration of dissolved CO2 into a
base-state and superimposed perturbations of initial magnitude ε:

C = Cref + εθ, P = Pref + εΠ.

When these are substituted into the governing equations with terms O(ε2) being
ignored and the equation analysed at different orders of ε, we get at O(ε0)

∂Cref

∂t
=

∂Cref

∂z2
, (3.1)

Cref (z = 0, t) = 1,
∂Cref

∂z
(z = 1, t) = 0, Cref (z, t = 0) = 0.

The vertical velocity equation, being linear, is unaffected,

Lw = Ra∇2
Hθ, (3.2)

with the following boundary conditions:

w(z = 0) = 0, w(z = 1) = 0.

Finally, the linearized dynamics of the perturbation are given by:

∂θ

∂t
+ w

dCref

dz
= ∇2

Hθ +
∂2θ

∂z2
, (3.3)

θ(z = 0, t) = 0,
∂θ

∂z
(z = 1, t) = 0.

We now take the vertical velocity and the concentration perturbation to be wave-
like in the horizontal direction and expand them in terms of suitable eigenfunctions
satisfying the boundary conditions in the vertical direction:

w =
∑

n

ŵne
ik · xsin(nπz), (3.4)

θ =
∑

n

θ̂ne
ik · xsin

((
n − 1

2

)
πz

)
. (3.5)
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After substitution of these equations in the linearized governing equations and use of
the Galerkin technique, the PDEs can be reduced to a set of coupled ODEs of the

initial-value type for the coefficients θ̂n,

d

dt
θ̂n = Gmn θ̂m, (3.6)

where the matrix G for the anisotropy problem is given by

G = A−1[B − γRahCE−1D], (3.7)

Anm =
1

2
δnm, (3.8)

Bnm = −1

2

[
γ k2 +

(
m − 1

2

)2

π2

]
δnm, (3.9)

Cnm = −1

2

[
exp

{
−

(
m + n − 1

2

)2

π2t

}
− exp

{
−

(
m − n +

1

2

)2

π2t

}]
, (3.10)

Dnm = (−1)n+m s2n

π

(
n + m − 1

2

)(
n − m +

1

2

) , (3.11)

Enm = −1

2
(k2 + m2π2)δnm , (3.12)

and for the heterogeneous problem

G = [D (A + B)−1 C − E], (3.13)

Anm = −(k2 + m2π2)

∫ 1

0

R(z) sin(mπz) sin(nπz) dz, (3.14)

Bnm = mπ

∫ 1

0

R′(z) cos(mπz) sin(nπz) dz, (3.15)

Cnm = −Rak2

∫ 1

0

sin((m − 1/2)πz) sin(nπz) dz, (3.16)

Dnm = e−(m−n−1/2)2π2t − e−(m+n−1/2)2π2t , (3.17)

Enm =
(
k2 + (n − 1/2)2π2

)
δnm . (3.18)

For every realization of the resistance field R(z), the integrals are computed
numerically at the beginning of the calculation. One can also use the linear relation
between the vertical velocity and the concentration perturbation to derive the ODEs
for ŵn. The amplitude of perturbations in this formulations is then understood to be
related to the kinetic energy of the perturbations.

Once the PDEs have been reduced to ODEs of the initial-value type, we are faced
with the problem of supplying suitable initial conditions for solving . In principle,
one would like to consider the fastest growing perturbations and obtain bounds
using these solutions. However, it has been extremely difficult to obtain the fastest
growing perturbations due to the time dependence of the base-state. We cannot use
the traditional eigenvalue treatments, since the problem is non-autonomous (i.e. the
matrix G is time dependent). Previous investigators have either solved the initial-value
problem with an arbitrarily chosen initial condition (following Foster 1965) or used
a quasi-steady-state approximation model and frozen the base-state at some initial
instant of time. Clearly, both of these approaches have shortcomings in dealing with
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the problem. Recently, the eigenvalue approach has been generalized to deal with
problems with extremely non-normal and non-autonomous matrices. This technique
is called non-modal stability analysis. Here, we present a brief overview of the idea
behind non-modal stability analysis.

Consider the sample vector differential equation

d

dt
x = G(t)x. (3.19)

We now define the ‘propagator’ for this system, X(t, t0), as

x(t) = X(t, t0)x(t0); (3.20)

i.e. the propagator X is a time-dependent matrix which maps the initial condition x(t0)
into the solution of the ODE at time t . Substituting this definition into the ODE, we
get

d

dt
X(t, t0) = G(t)X(t, t0), (3.21)

which is a matrix-differential equation for the propagator X(t, t0). However, the
advantage with this equation is that the initial condition needed to solve it is known:

X(t0, t0) = I, (3.22)

where I is the identity matrix. This represents a set of N2 coupled differential equations
for the individual elements of the matrix X(tn, t0), where N is the number of modes used
to represent the perturbations, i.e. size of the vector x. These equations are integrated
in time using a fourth-order Runge–Kutta scheme to obtain the propagator matrix
evaluated at discrete times tn = t0 + n�t , where �t is the time step. At each time
step tn, the matrix X(tn, t0) provides a map from every initial condition at t = t0 to its
corresponding final state at t = tn. Let us define the amplification achieved by some
initial perturbation xi(t0) as

σi(tn) =
‖xi(tn)‖
‖xi(t0)‖

, (3.23)

where the final state xi(tn) can be obtained using the propagator as xi(tn) =
X(tn, t0)xi(t0). What we are really interested in is the amplification maximized over all
possible initial conditions, σ (tn) = maxi σi(tn). Let us also simplify by normalizing the
initial condition such that ‖x(t0)‖ = 1. We now have

σ (tn) = max ‖X(tn, t0)x(t0)‖. (3.24)

This is, by definition, the first singular value of the matrix X(tn, t0) which can be
computed using the singular value decomposition (please refer to Golub & Loan
1996). At every time step tn, we compute the set of singular values and singular
vectors of the matrix X(tn, t0) and store the first singular value as the growth achieved
by the most amplified perturbation. Further, the initial condition x(t0) which leads
to this amplification can be obtained as the corresponding right singular vector.
Non-modal analysis thus not only provides us with the maximum amplification over
all possible initial conditions but also gives us the initial condition which leads to
this amplification. For a detailed review of non-modal stability theory, please refer to
Farrell & Ioannou (1996a,b) and the recent review by Schmid (2007).

This approach of using singular values to compute the growth of perturbations
is exact for any linear system. For the problem of density-dependent convection
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in porous media, it can be shown that all perturbations decay in the asymptotic
limit t → ∞. This leads to a serious difficulty in defining the onset of convection
within the framework of the linearized equations. The physical mechanism of the
onset of convection is a nonlinear one – when the perturbations have amplified
to a large-enough extent, the nonlinear terms neglected in our analysis become
dominant. Previously, we (Rapaka et al. 2008) compared the growth of perturbations
in homogeneous porous media to those observed in pseudo-spectral simulations and
showed that the early fingers manifest themselves when the nonlinear terms begin to
dominate. We also showed that the time at which this transition occurs depends on
the initial amplitude of the perturbations.

4. Results for anisotropic media
In this section, we present the results obtained for the case of homogeneous porous

media with constant anisotropy ratio. In our previous publication ( Rapaka et al.
2008) on the isotropic problem, we showed that the onset of instability is marked
by the dominance of nonlinear terms neglected in the linear analysis. The extent of
magnification required depends on the initial amplitude of perturbations, for which
estimates are hard to obtain. For simplicity, in this work we define the ‘critical
time of order k’, t (k)

c , as the time at which the most unstable perturbation reaches
an amplification of 10k . For instance, for a given Rayleigh number Ra , t (3)

c is the
earliest time at which some perturbation is amplified by a factor of 1000. In a similar
sense, the ‘critical Rayleigh number of order k ’, Ra (k)

c , is defined to be the smallest
Rayleigh number for which some perturbation reaches an amplification by a factor
of 10k .

Using these definition, we first compare our results with those obtained using an
initial-value approach. Since the onset of convection occurs far from the bottom
boundary, it has been recognized that the critical time and wavenumbers should
be insensitive to the boundary conditions applied at the bottom wall. Following
the Galerkin procedure presented in Ennis-King et al. (2005), we have computed
the growth rates of perturbations using both a Dirichlet boundary condition and a
Neumann boundary condition at the bottom wall. In figure 1, we compare the critical
wavenumbers of order three computed using non-modal analysis with those obtained
by Ennis-King et al. (2005) using the initial-value approach for both sets of boundary
conditions. The Rayleigh numbers in our simulations are different from those used
by Ennis-King et al. (2005) due to the difference in the definition of critical Rayleigh
number. Since we require a minimum amplification of three orders of magnitude, the
Rayleigh numbers for our simulations are higher than those used for the initial-value
calculation.

We find that the critical wavenumbers computed using non-modal analysis are
relatively insensitive to the bottom boundary condition as expected. This reflects the
fact that the optimal initial perturbation for both boundary conditions is essentially
the same and is captured well by non-modal analysis. An initial condition, such as

θ̂n = 1, ∀n, represents a different function for the Dirichlet boundary condition than it
does for the Neumann boundary condition, since the eigenfunction basis is different.
This is possibly the result for the discrepancy in critical wavenumbers predicted using
the initial-value problem.

In their work, Ennis-King et al. (2005) also used single-term approximations of
the Galerkin expansion to obtain analytical scalings for the dependence of critical
Rayleigh number, wavenumber and time for the onset of convection on the anisotropy
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Figure 1. Comparison of critical wavenumbers computed using the initial-value approach
(above) with those computed using non-modal stability analysis (below). In each case, the
solid line corresponds to using a Dirichlet boundary condition at the bottom wall, and the
symbols correspond to a Neumann boundary condition. We observe that the results obtained
using non-modal analysis are relatively insensitive to the bottom boundary condition, as
expected.

ratio γ :

Rac(γ )/Rac(1) ∼
(1 +

√
γ )2

4γ
, (4.1)

tc(γ )/tc(1) ∼
(1 +

√
γ )4

16γ 2
, (4.2)

sc(γ )/sc(1) ∼
(1 +

√
γ )2

4γ 3/4
. (4.3)

In figure 2 we show the comparison between the scalings proposed by Ennis-
King et al. (2005) and those obtained using the non-modal stability calculation for
critical values of order zero (solid line) and order three. It can be seen that the
values computed from non-modal theory correspond closely with those predicted by
Ennis-King et al. (2005).

The critical values of the Rayleigh number presented so far are values computed
over large time scales. For engineering purposes, one is interesting in knowing
the medium properties (permeability, porosity, etc.) needed to ensure that the
perturbations amplify a certain amount in a specified amount of time. We have
used non-modal stability analysis to compute critical Rayleigh numbers conditioned
on the maximum time at which the perturbations amplify by a factor of 103. We
have computed the smallest Rayleigh number needed to achieve a perturbation
amplification of a factor of 103 for t < 0.01, t < 0.1 and t < 1.0. In figure 3, we
show the phase diagram of the different critical Rayleigh numbers as a function of
the anisotropy ratio γ . The critical Rayleigh number in the long-time limit for the
isotropic problem (γ = 1.0) is seen to be close to the well-known value of 4π2 obtained
by previous investigators. It can be seen that requiring the critical time to be less that
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Figure 4. Maximum amplification achieved by any perturbation for sinusoidal permeability
fields of the form logR(z) = −sin(nπz). It is observed that the permeability variation has a
strong effect for low wavenumbers with a cutoff wavenumber after which fluctuations are not
important. (a) Maximum amplification versus vertical wavenumber for Ra varying between
400 and 1000 in steps of 100. (b) The dependence of the cutoff wavenumber on the Rayleigh
number Ra: symbols, non-modal theory; dashed line, n ∼ Ra1/2.

0.01 increases the minimum Rayleigh number by a factor of 10. Given the properties
of a particular site, this plot can also be used to estimate the time needed for the
onset of convection.

5. Results for heterogeneous systems
In this section, we will present results relevant to heterogeneous porous media

with a dominant layering structure. To this effect, we have used non-modal stability
theory to compute the growth of perturbations for simple permeability fields of the
form log R(z) = δ sin(nπz), where n is the wavenumber associated with permeability
variation in the vertical direction.

5.1. Effect of characteristic-length scale

We used permeability fields of the form log R(z) = δ sin(nπz) for n taking all integer
values between 1 and 40. We used δ = −1 in all the simulations, resulting in decreasing
resistance to flow at the top of the domain, i.e. for z ∈ [0, 1/2n]. We used the first
32 modes in the Galerkin expansion of concentration fluctuation and computed
the amplification of perturbations for 0 � t � 0.01. The horizontal wavenumber was
varied between k = π and k = 50π.

In figure 4, we show the maximum amplification achieved by the perturbations as
a function of the wavenumber n corresponding to variation in the vertical direction.
It is seen that there are two distinct regimes in this plot. For sufficiently low values
of n, the variations in permeability have a very strong influence on the growth
of perturbations, whereas at higher values of n the system seems to be relatively
unaffected by the wavenumber. The wavenumber at which this behaviour changes
is associated with the diffusive length scale l =

√
Dt . Permeability variations below

this length scale have only a small influence on the growth of perturbations, whereas
variations in permeability at larger length scales have a very strong influence. Since
the only non-dimensional parameter for this problem is the Rayleigh number which
depends on the diffusion coefficient as D−1, we expect the transition wavenumber to
scale as n ∼ Ra1/2.
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Figure 5. (a) Sample resistance fields generated for uncertainty quantification. The bold line
is the base resistance field. (b) Growth of perturbations for the different realizations. The bold
line corresponds to the base field. (c) The probability density of critical times observed. The
mean critical time was 1.6 × 10−3 with a standard deviation of 1.2 × 10−4 when Ra = 900.

Figure 4 shows that variations of permeability at low wavenumbers has a very
strong influence on the dynamics of perturbations. Since the permeability data can
never be obtained exactly, this simulation underscores the importance of uncertainty
quantification for heterogeneous media. It is possible to undertake such a task using
a Monte Carlo approach. We generated a set of 1000 permeability fields, obtained
by adding perturbations to a base field, and calculated the growth of perturbations
for this set of realizations. In figure 5(a), the different realizations are shown along
with the base resistance field (bold line). The amplifications computed for the different
realizations are shown in figure 5(b). The simulations were performed using a Rayleigh
number of Ra = 900. The permeability field has a relatively mild heterogeneity, with a
variation less than one order of magnitude. We can now use the times at which each
system attains three orders of magnitude amplification, to generate the probability
distribution function of the critical time for this system. In figure 5(c), we show the
probability density function for the critical times. The mean critical time was found
to be 1.6 × 10−3 with a standard deviation of 1.2 × 10−4.

5.2. Comparison with simulations

For engineering purposes, we are interested in real porous media which are
heterogeneous in all directions. For the purposes of this paper, our interest is in
those fields in which the typical variation of permeability in the vertical direction
is much larger than that in the horizontal directions. To make this definition more
formal, we define a parameter α as the ratio of the norms of permeability gradients
in the horizontal and vertical directions:

α =
‖∂xK‖
‖∂zK‖ .

The case α =0 corresponds to a strictly layered porous medium (variation only in the
vertical direction), where the limit α = 1 corresponds to an isotropic porous medium.
The growth of perturbations calculated using non-modal analysis is expected to be
useful whenever α � 1.

We will first describe the technique used for generating the heterogeneous
permeability fields. The permeability fields are generated by adding an isotropic
random fluctuation field to a strictly layered permeability field:

logK(x, z) = logK0(z) + εζ (x, z). (5.1)
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(a) (b)

Figure 6. (a) The one-dimensional base permeability field with no variations in the horizontal
direction. (b) An isotropic permeability fluctuation, generated using the turning-bands
algorithm.

We have also ensured that the horizontal mean along any slice of ζ (x, z) vanishes, so
that the horizontally averaged logK(x, z) is the same as logK0:∫

ζ (x, z) dx = 0, ∀z. (5.2)

The isotropic fields are generated using the turning-bands method (Mantoglou &
Wilson 1982) and modified to ensure zero mean along each horizontal slice. The
turning-bands algorithm replaces the task of generating a high-dimensional random
field with a given covariance function with the generation of a finite number of
one-dimensional random functions along lines passing through an arbitrarily chosen
origin (typically taken to be at the centre of the domain, for convenience). The value
of the random field at each grid point is then obtained using the average of projections
from each line. Owing to the reduction in dimensionality of the problem, random
fields can be generated extremely rapidly by using this approach.

By varying ε in (5.1), it is possible to control the value of α. On the other hand,
given a value of α, we can compute ε by using any standard root-finding technique. As
an example, we consider the one-dimensional log-permeability field and the isotropic
fluctuation shown in figure 6. By choosing different values of ε, it is possible to
obtain heterogeneous structures characterized by different values of α. We used this
technique to generate permeability fields with α varying from 0.1 to 0.9 in increments
of 0.1. These structures are shown in figure 7.

To compare the predictions of stability theory with two-dimensional heterogeneous
media, we developed a staggered-grid finite-volume solver for the governing equations
(Ferziger & Peric 2001). The pressure and concentration of dissolved CO2 are stored at
the centre of the grid cell, whereas the fluid velocities are defined on the corresponding
edges. The equations are integrated in time using a second-order Adams–Bashforth
technique, and a Runge–Kutta time-stepping algorithm is used for the first time
step. The finite-volume solver was tested by comparing the results obtained for a
homogeneous system with those obtained using a pseudo-spectral solver.

The finite-volume simulations are initialized using the analytical base-state at
t = 10−4. The initial concentration field is perturbed by adding a Gaussian, spatially
uncorrelated noise field. In our previous publication (Rapaka et al. 2008), we showed
that when the simulations are initialized using the most amplified initial perturbation,
the growth of perturbations matches extremely well with those predicted from theory.
When the initial perturbation is taken to be random noise, there is significant decay



Convection in layered porous media 241

0.1 0.2 0.3

0.4 0.5 0.6

0.7 0.8 0.9

Figure 7. Sample permeability fields generated using a linear combination of the fields shown
in figure 6, labelled by their value of α. The proportion of isotropic fluctuation added is chosen
to yield the required value of α.
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Figure 8. (a) Comparison of the amplification predicted by non-modal theory (blue line) to
that obtained in a finite-volume simulation (red line) with ε = 10−3. We observe three distinct
regions in the growth from numerical simulations: (I) an initial transient period of rapid
relaxation of sub-optimal modes, (II) growth of perturbations which agrees well with that
predicted by the theory and (III) nonlinear growth of the fingers. (b) Comparison of the
growth rates obtained from simulations with different values of α. The Rayleigh number is
Ra = 400, and log permeability has a standard deviation of 1.0. The curve corresponding to
non-modal theory has been scaled down by a factor of 100 for ease of comparison.

of perturbations initially due to the rapid relaxation of the sub-optimal modes. Very
soon, the perturbation resolves itself to the dominant mode after which the growth
of perturbations is expected to match the theoretical prediction. In figure 8(a), we
compare the growth of perturbations predicted from theory with those obtained from
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a finite-volume simulation. As expected, we observe an initial decay period in which
the energy in the perturbations drops sharply and the perturbation resolves itself to
the dominant mode. Beyond this, the growth of the perturbation agrees extremely
well with that predicted by the theory. At some point during this growth process, the
perturbations become strong enough that the nonlinear terms neglected in the stability
theory become dominant. After this point of time, the growth of perturbations in the
simulation begins to deviate from the theoretical prediction.

To study the influence of α, we generated many realizations such as those shown
in figure 7. For each realization, the finite-volume solver was used to compute the
growth of perturbations in the heterogeneous system. In figure 8(b), we present
the results obtained for permeability fields (same as those shown in figure 7) with
different values of α. For these simulations, the Rayleigh number is Ra =400, and
the permeability variation has a standard deviation of 1.0. The predictions obtained
from non-modal theory agree extremely well with the simulations for low values of
α. When α = 0.1, the agreement between theory and simulations is almost exact. At
α = 0.3, the simulations begin to show slightly higher growth than that predicted
by theory. Over tests done with multiple realizations, we observed that the results
from non-modal theory remain useful as long as α � 0.25. For α > 0.25, the isotropic
component of permeability creates ‘bridges’ between high-permeability layers which
were originally separated by a low-permeability barrier. This results in a faster growth
of perturbations in the simulations compared to those predicted by the theory.

6. Discussion
The main contribution of this paper is a theoretical model for predicting growth of

perturbations in anisotropic and heterogeneous porous media. From an engineering
perspective, most field measurements are obtained using vertical wells and give us
detailed information about the variation of permeability and porosity in the vertical
direction. When combined with multiple measurements at different locations, the data
can give a reasonable estimate of the three-dimensional structure of the reservoir.

In this work, we have presented a theoretical model that can rapidly produce
the growth of perturbations in layered formations. We have shown that this model
remains useful as long as the gradients of permeability in the horizontal direction are
much smaller than those in the vertical direction. Owing to the speed of calculations,
this method can also be used as a tool to perform uncertainty analysis using a Monte
Carlo approach. For a given variation of permeability in the vertical direction, we
can generate a large array of cases which account for deviations from the available
data. By using the growth of perturbations over this sample space, we can obtain
the probability distribution functions of the critical time and length scales. Nield and
coworkers (see Nield & Simmons 2007 and Nield, Kuznetsov & Simmons 2009) have
addressed the issue of an effective Rayleigh number for the onset of Horton–Rogers–
Lapwood convection in heterogeneous porous media. To our knowledge, this is the
first publication which addresses this issue for the problem of transient convection.

The authors would like to thank Professor Gregory Eyink and Professor Andrea
Prosperetti for valuable discussions. Saikiran Rapaka would like to thank Professor
Robert McKibbin and Professor Peder Tyvand for comments on the relation
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AST-0428325.



Convection in layered porous media 243

REFERENCES

Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15,
1377–1383.

Braester, C. & Vadasz, P. 1993 The effect of a weak heterogeneity of a porous medium on natural
convection. J. Fluid Mech. 254, 345–362.

Castinel, G. & Combarnous, M. 1977 Natural convection in an anisotropic porous medium. Intl
Chem. Engng 17, 605–613.

Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1–105.

Currie, I. G. 1967 The effect of heating rate on the stability of stationary fluids. J. Fluid Mech. 29,
337–347.

Elder, J. W. 1967 Transient convection in a porous medium. J. Fluid Mech. 27, 609–623.

Ennis-King, J., Preston, I. & Paterson, L. 2005 Onset of convection in anisotropic porous media
subject to a rapid change in boundary conditions. Phys. Fluids 17 (8), 084107.

Epherre, J. F. 1977 Criterion for the appearance of natural convection in an anisotropic porous
layer. Intl Chem. Engng 17, 615–616.

Farrell, B. F. & Ioannou, P. J. 1996a Generalized stability theory. Part I. Autonomous operators.
J. Atmos. Sci. 53 (14), 2025.

Farrell, B. F. & Ioannou, P. J. 1996b Generalized stability theory. Part II. Nonautonomous
operators. J. Atmos. Sci. 53 (14), 2041.

Ferziger, J. H. & Peric, M. 2001 Computational Methods for Fluid Dynamics . Springer.

Foster, T. D. 1965 Stability of a homogeneous fluid cooled uniformly from above. Phys. Fluids
8 (7), 1249–1257.

Garcia, J. E. 2001 Density of aqueous solutions of CO2. Tech Rep. LBNL-49023. Lawrence Berkeley
National Laboratory.

Golub, G. H. & Loan, C. F. Van 1996 Matrix Computations . Johns Hopkins University Press.

Hassanzadeh, H., Pooladi-Darvish, M. & Keith, D. W. 2006 Stability of a fluid in a horizontal
saturated porous layer: effect of nonlinear concentration profile, initial, and boundary
conditions. Transp. Porous Med. 65 (2), 193–211.

Hitchon, B. 1996 Aquifer Disposal of Carbon Dioxide: Hydrodynamic and Mineral Trapping . Alberta
Research Council.

Horton, C. W. & Rogers, F. T., Jr 1945 Convection currents in a porous media. J. Appl. Phys. 16,
367–370.

Intergovernmental Panel on Climate Change (IPCC) 2005 IPCC Special Report on Carbon
Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel
on Climate Change (B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer).
Cambridge University Press.

Jhaveri, B. S. & Homsy, G. M. 1982 The onset of convection in fluid layers heated rapidly in a
time-dependent manner. J. Fluid Mech. 114, 251–260.

Joseph, D. D. 1976 Stability of Fluid Motions I , Tracts in Natural Philosophy, vol. 27. Springer.

Kim, M. C. & Choi, C. K. 2007 Relaxed energy stability analysis on the onset of buoyancy-driven
instability in the horizontal porous layer. Phys. Fluids 19, 088103.

Kvernvold, O. & Tyvand, P. A. 1979 Nonlinear thermal convection in an anisotropic porous
media. J. Fluid Mech. 90, 609–624.

Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521.

Leong, J. C. & Lai, F. C. 2001 Effective permeability of a layered porous cavity. ASME J. Heat
Transfer 123, 512–519.

Lick, W. 1965 The instability of a fluid layer with time-dependent heating profile. J. Fluid Mech.
21, 565.

Mantoglou, A. & Wilson, J. L. 1982 The turning bands method for simulation of random fields
using line generation by a spectral method. Water Resour. Res. 18, 1379–1394.

McKibbin, R. & O’Sullivan, M. J. 1980 Onset of convection in a layered porous medium heated
from below. J. Fluid Mech. 96 (2), 375–393.

McKibbin, R. & Tyvand, P. A. 1982 Anisotropic modelling of thermal convection in multilayered
porous media. J. Fluid Mech. 118, 315–339.

Nield, D. A. 1994 Estimation of an effective Rayleigh number for convection in a vertically
inhomogeneous porous medium or clear fluid. Intl J. Heat Fluid Flow 15, 337–340.



244 S. Rapaka, R. Pawar, P. Stauffer, D. Zhang and S. Chen

Nield, D. A. 1997 Notes on convection in a porous medium: (i) an effective Rayleigh number for
an anisotropic layer, (ii) the Malkus hypothesis and wavenumber selection. Transp. Porous
Med. 27, 135–142.

Nield, D. A. & Bejan, A. 2006 Convection in Porous Media , 3rd edn. Springer.

Nield, D. A., Kuznetsov, A. V. & Simmons, C. T. 2009 The effect of strong heterogeneity on the
onset of convection in a porous medium: non-periodic global variation. Transp. Porous Med.
77, 169–186.

Nield, D. A. & Simmons, C. T. 2007 A discussion on the effect of heterogeneity on the onset of
convection in a porous medium. Transp. Porous Med. 68, 413–421.

Nilsen, T. & Storesletten, L. 1990 An analytical study on natural convection in isotropic and
anisotropic porous channels. J. Heat Transfer 112, 396–401.

Prasad, A. & Simmons, C. T. 2003 Unstable density-driven flow in heterogeneous porous media: a
stochastic study of the Elder (1967b) ‘short heater’ problem. Water Resour. Res. 39 (1), 1007.

Rapaka, S., Chen, S., Pawar, R. J., Stauffer, P. H. & Zhang, D. 2008 Nonmodal growth of
perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285–303.

Riaz, A., Hesse, M., Tchelepi, H. A. & Orr Jr., F. M. 2006 Onset of convection in a gravitationally
unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111.

Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.

Simmons, C. T., Fenstemaker, T. R. & Sharp, J. M. 2001 Variable-density groundwater flow
and solute transport in heterogeneous porous media: approaches, resolutions and future
challenges. J. Contam. Hydrol. 52, 245–275.

Stauffer, P. H. 2006 Flux flummoxed: a proposal for consistent usage. Ground Water 44 (2),
125–128.

Straughan, B. 2004 The Energy Method, Stability and Nonlinear Convection . Springer.

Tan, C. T. & Homsy, G. M. 1986 Stability of miscible discplacements in porous media: rectilinear
flow. Phys. Fluids 29 (11), 3549–3556.

Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behaviour of Nonnormal
Matrices and Operators . Princeton University Press.

Tyvand, P. A. & Storesletten, L. 1991 Onset of convection in an anisotropic porous medium with
oblique principal axes. J. Fluid Mech. 226, 371–382.

Wooding, R. A. 1978 Large-scale geothermal field parameters and convection theory. NZ J. Sci.
27, 219–228.

Xu, X., Chen, S. & Zhang, D. 2006 Convective stability analysis of the long-term storage of carbon
dioxide in deep saline aquifers. Adv. Water Resour. 29, 397–407.


